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Abstract
This contribution describes how to deal with the statistical nature of ionisa-
tion energy loss, characterized by large fluctuations in the amount of energy
deposited by a particle traversing an absorber element. Various models a re-
viewed.

1 INTRODUCTION

Due to the statistical nature of ionisation energy loss, large fluctuations can occur in the amount of energy
deposited by a particle traversing an absorber element. Continuous processes such as multiple scattering
and energy loss play a relevant role in the longitudinal and lateral development of electromagnetic and
hadronic showers, and in the case of sampling calorimeters the measured resolution can be significantly
affected by such fluctuations in their active layers. The description of ionisation fluctuations is charac-
terised by the significance parameter κ, which is proportional to the ratio of mean energy loss to the
maximum allowed energy transfer in a single collision with an atomic electron

κ =
ξ

Emax

Emax is the maximum transferable energy in a single collision with an atomic electron.

Emax =
2meβ

2γ2

1 + 2γme/mx + (me/mx)2
,

where γ = E/mx, E is energy and mx the mass of the incident particle, β2 = 1 − 1/γ2 and me is the
electron mass. ξ comes from the Rutherford scattering cross section and is defined as:

ξ =
2πz2e4NAvZρδx

meβ2c2A
= 153.4

z2

β2

Z

A
ρδx keV,

where
z charge of the incident particle
NAv Avogadro’s number
Z atomic number of the material
A atomic weight of the material
ρ density
δx thickness of the material
κ measures the contribution of the collisions with energy transfer close to Emax. For a given

absorber, κ tends towards large values if δx is large and/or if β is small. Likewise, κ tends towards zero
if δx is small and/or if β approaches 1.

The value of κ distinguishes two regimes which occur in the description of ionisation fluctuations:
1. A large number of collisions involving the loss of all or most of the incident particle energy during

the traversal of an absorber.
As the total energy transfer is composed of a multitude of small energy losses, we can apply
the central limit theorem and describe the fluctuations by a Gaussian distribution. This case is
applicable to non-relativistic particles and is described by the inequality κ > 10 (i.e. when the
mean energy loss in the absorber is greater than the maximum energy transfer in a single collision).
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Fig. 1: The variable ξ/I0 can be used to measure the validity range of the Landau theory. It depends on the type
and energy of the particle, Z, A and the ionisation potential of the material and the layer thickness.

2. Particles traversing thin counters and incident electrons under any conditions.
The relevant inequalities and distributions are 0.01 < κ < 10, Vavilov distribution, and κ < 0.01,
Landau distribution.

An additional regime is defined by the contribution of the collisions with low energy transfer
which can be estimated with the relation ξ/I0, where I0 is the mean ionisation potential of the atom.
Landau theory assumes that the number of these collisions is high, and consequently, it has a restriction
ξ/I0 � 1. In GEANT (see URL http://wwwinfo.cern.ch/asdoc/geant/geantall.html), the
limit of Landau theory has been set at ξ/I0 = 50. Below this limit special models taking into account the
atomic structure of the material are used. This is important in thin layers and gaseous materials. Figure
1 shows the behaviour of ξ/I0 as a function of the layer thickness for an electron of 100 keV and 1 GeV
of kinetic energy in Argon, Silicon and Uranium.

In the following sections, the different theories and models for the energy loss fluctuation are
described. First, the Landau theory and its limitations are discussed, and then, the Vavilov and Gaussian
straggling functions and the methods in the thin layers and gaseous materials are presented.

2 LANDAU THEORY

For a particle of mass mx traversing a thickness of material δx, the Landau probability distribution may
be written in terms of the universal Landau function φ(λ) as [1]:

f(ε, δx) =
1
ξ
φ(λ)
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where

φ(λ) =
1

2πi

∫ c+i∞

c−i∞
exp (u lnu+ λu) du c ≥ 0

λ =
ε− ε̄
ξ

− γ′ − β2 − ln
ξ

Emax

γ′ = 0.422784 · · · = 1− γ
γ = 0.577215 . . . (Euler’s constant)

ε̄ = average energy loss

ε = actual energy loss

2.1 Restrictions
The Landau formalism makes two restrictive assumptions:

1. The typical energy loss is small compared to the maximum energy loss in a single collision. This
restriction is removed in the Vavilov theory (see section 3).

2. The typical energy loss in the absorber should be large compared to the binding energy of the
most tightly bound electron. For gaseous detectors, typical energy losses are a few keV which
is comparable to the binding energies of the inner electrons. In such cases a more sophisticated
approach which accounts for atomic energy levels [4] is necessary to accurately simulate data
distributions. In GEANT, a parameterised model by L. Urbán is used (see section 5).

In addition, the average value of the Landau distribution is infinite. Summing the Landau fluctu-
ation obtained to the average energy from the dE/dx tables, we obtain a value which is larger than the
one coming from the table. The probability to sample a large value is small, so it takes a large number
of steps (extractions) for the average fluctuation to be significantly larger than zero. This introduces a
dependence of the energy loss on the step size which can affect calculations.

A solution to this has been to introduce a limit on the value of the variable sampled by the Landau
distribution in order to keep the average fluctuation to 0. The value obtained from the GLANDO routine is:

δdE/dx = ε− ε̄ = ξ(λ− γ′ + β2 + ln
ξ

Emax
)

In order for this to have average 0, we must impose that:

λ̄ = −γ′ − β2 − ln
ξ

Emax

This is realised introducing a λmax(λ̄) such that if only values of λ ≤ λmax are accepted, the
average value of the distribution is λ̄.

A parametric fit to the universal Landau distribution has been performed, with following result:

λmax = 0.60715 + 1.1934λ̄+ (0.67794 + 0.052382λ̄) exp(0.94753 + 0.74442λ̄)

only values smaller than λmax are accepted, otherwise the distribution is resampled.

3 VAVILOV THEORY

Vavilov [5] derived a more accurate straggling distribution by introducing the kinematic limit on the
maximum transferable energy in a single collision, rather than using Emax = ∞. Now we can write [2]:

f (ε, δs) =
1
ξ
φv

(
λv, κ, β

2
)
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where

φv

(
λv, κ, β

2
)

=
1

2πi

∫ c+i∞

c−i∞
φ (s) eλsds c ≥ 0

φ (s) = exp
[
κ(1 + β2γ)

]
exp [ψ (s)] ,

ψ (s) = s lnκ+ (s+ β2κ) [ln(s/κ) + E1(s/κ)]− κe−s/κ,

and

E1(z) =
∫ ∞

z
t−1e−tdt (the exponential integral)

λv = κ

[
ε− ε̄
ξ

− γ′ − β2

]
The Vavilov parameters are simply related to the Landau parameter by λL = λv/κ − lnκ. It can

be shown that as κ→ 0, the distribution of the variable λL approaches that of Landau. For κ ≤ 0.01 the
two distributions are already practically identical. Contrary to what many textbooks report, the Vavilov
distribution does not approximate the Landau distribution for small κ, but rather the distribution of λL

defined above tends to the distribution of the true λ from the Landau density function. Thus the routine
GVAVIV samples the variable λL rather than λv. For κ ≥ 10 the Vavilov distribution tends to a Gaussian
distribution (see next section).

4 GAUSSIAN THEORY

Various conflicting forms have been proposed for Gaussian straggling functions, but most of these appear
to have little theoretical or experimental basis. However, it has been shown [3] that for κ ≥ 10 the Vavilov
distribution can be replaced by a Gaussian of the form:

f(ε, δs) ≈ 1

ξ
√

2π
κ (1− β2/2)

exp
[
(ε− ε̄)2

2
κ

ξ2(1− β2/2)

]

thus implying

mean = ε̄

σ2 =
ξ2

κ
(1− β2/2) = ξEmax(1− β2/2)

5 URBÁN MODEL

The method for computing restricted energy losses with δ-ray production above given threshold energy
in GEANT is a Monte Carlo method that can be used for thin layers. It is fast and it can be used for any
thickness of a medium. Approaching the limit of the validity of Landau’s theory, the loss distribution
approaches smoothly the Landau form as shown in Figure 2.

It is assumed that the atoms have only two energy levels with binding energy E1 and E2. The
particle–atom interaction will then be an excitation with energy loss E1 or E2, or an ionisation with an
energy loss distributed according to a function g(E) ∼ 1/E2:

g(E) =
(Emax + I)I

Emax

1
E2

(1)

The macroscopic cross-section for excitations (i = 1, 2) is

Σi = C
fi

Ei

ln(2mβ2γ2/Ei)− β2

ln(2mβ2γ2/I)− β2
(1− r) (2)
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Fig. 2: Energy loss distribution for a 3 GeV electron in Argon as given by standard GEANT. The width of the layers
is given in centimeters.

and the macroscopic cross-section for ionisation is

Σ3 = C
Emax

I(Emax + I) ln(Emax+I
I )

r (3)

Emax is the GEANT cut for δ-production, or the maximum energy transfer minus mean ionisation energy,
if it is smaller than this cut-off value. The following notation is used:

r, C parameters of the model
Ei atomic energy levels
I mean ionisation energy
fi oscillator strengths

The model has the parameters fi, Ei, C and r (0 ≤ r ≤ 1). The oscillator strengths fi and the
atomic level energies Ei should satisfy the constraints

f1 + f2 = 1 (4)

f1 lnE1 + f2 lnE2 = ln I (5)

The parameter C can be defined with the help of the mean energy loss dE/dx in the following way:
The numbers of collisions (ni, i = 1,2 for the excitation and 3 for the ionisation) follow the Poisson
distribution with a mean number 〈ni〉. In a step ∆x the mean number of collisions is

〈ni〉 = Σi∆x (6)

The mean energy loss dE/dx in a step is the sum of the excitation and ionisation contributions

dE

dx
∆x =

[
Σ1E1 + Σ2E2 + Σ3

∫ Emax+I

I
E g(E) dE

]
∆x (7)
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From this, using the equations (2), (3), (4) and (5), one can define the parameter C

C =
dE

dx
(8)

The following values have been chosen in GEANT for the other parameters:

f2 =
{

0 if Z ≤ 2
2/Z if Z > 2

⇒ f1 = 1− f2

E2 = 10Z2eV ⇒ E1 =
(

I

E
f2
2

) 1
f1

r = 0.4

With these values the atomic level E2 corresponds approximately the K-shell energy of the atoms and
Zf2 the number of K-shell electrons. r is the only variable which can be tuned freely. It determines the
relative contribution of ionisation and excitation to the energy loss.

The energy loss is computed with the assumption that the step length (or the relative energy loss)
is small, and—in consequence—the cross-section can be considered constant along the path length. The
energy loss due to the excitation is

∆Ee = n1E1 + n2E2 (9)

where n1 and n2 are sampled from Poisson distribution as discussed above. The loss due to the ionisation
can be generated from the distribution g(E) by the inverse transformation method:

u = F (E) =
∫ E

I
g(x)dx

E = F−1(u) =
I

1− u Emax
Emax+I

(10)

(11)

where u is a uniform random number between F (I) = 0 and F (Emax + I) = 1. The contribution from
the ionisations will be

∆Ei =
n3∑

j=1

I

1− uj
Emax

Emax+I

(12)

where n3 is the number of ionisation (sampled from Poisson distribution). The energy loss in a step will
then be ∆E = ∆Ee + ∆Ei.

5.1 Fast simulation for n3 ≥ 16

If the number of ionisation n3 is bigger than 16, a faster sampling method can be used. The possible
energy loss interval is divided in two parts: one in which the number of collisions is large and the
sampling can be done from a Gaussian distribution and the other in which the energy loss is sampled for
each collision. Let us call the former interval [I, αI] the interval A, and the latter [αI,Emax] the interval
B. α lies between 1 and Emax/I . A collision with a loss in the interval A happens with the probability

P (α) =
∫ αI

I
g(E) dE =

(Emax + I)(α− 1)
Emaxα

(13)

The mean energy loss and the standard deviation for this type of collision are

〈∆E(α)〉 =
1

P (α)

∫ αI

I
E g(E) dE =

Iα lnα
α− 1

(14)
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and

σ2(α) =
1

P (α)

∫ αI

I
E2 g(E) dE = I2α

(
1− α ln2α

(α− 1)2

)
(15)

If the collision number is high , we assume that the number of the type A collisions can be calculated
from a Gaussian distribution with the following mean value and standard deviation:

〈nA〉 = n3P (α) (16)

σ2
A = n3P (α)(1− P (α)) (17)

It is further assumed that the energy loss in these collisions has a Gaussian distribution with

〈∆EA〉 = nA〈∆E(α)〉 (18)

σ2
E,A = nAσ

2(α) (19)

The energy loss of these collision can then be sampled from the Gaussian distribution.

The collisions where the energy loss is in the interval B are sampled directly from

∆EB =
n3−nA∑

i=1

αI

1− ui
Emax+I−αI

Emax+I

(20)

The total energy loss is the sum of these two types of collisions:

∆E = ∆EA + ∆EB (21)

The approximation of equations (16), (17), (18) and (19) can be used under the following condi-
tions:

〈nA〉 − c σA ≥ 0 (22)

〈nA〉+ c σA ≤ n3 (23)

〈∆EA〉 − c σE,A ≥ 0 (24)

where c ≥ 4. From the equations (13), (16) and (18) and from the conditions (22) and (23) the following
limits can be derived:

αmin =
(n3 + c2)(Emax + I)
n3(Emax + I) + c2I

≤ α ≤ αmax =
(n3 + c2)(Emax + I)
c2(Emax + I) + n3I

(25)

This conditions gives a lower limit to number of the ionisations n3 for which the fast sampling can be
done:

n3 ≥ c2 (26)

As in the conditions (22), (23) and (24) the value of c is as minimum 4, one gets n3 ≥ 16. In order to
speed the simulation, the maximum value is used for α.

The number of collisions with energy loss in the interval B (the number of interactions which has
to be simulated directly) increases slowly with the total number of collisions n3. The maximum number
of these collisions can be estimated as

nB,max = n3 − nA,min ≈ n3(〈nA〉 − σA) (27)

From the previous expressions for 〈nA〉 and σA one can derive the condition

nB ≤ nB,max =
2n3c

2

n3 + c2
(28)
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The following values are obtained with c = 4:
n3 nB,max n3 nB,max

16 16 200 29.63
20 17.78 500 31.01
50 24.24 1000 31.50
100 27.59 ∞ 32.00

5.2 Special sampling for lower part of the spectrum
If the step length is very small (≤ 5 mm in gases, ≤ 2-3 µm in solids) the model gives 0 energy loss for
some events. To avoid this, the probability of 0 energy loss is computed

P (∆E = 0) = e−(〈n1〉+〈n2〉+〈n3〉) (29)

If the probability is bigger than 0.01 a special sampling is done, taking into account the fact that in these
cases the projectile interacts only with the outer electrons of the atom. An energy level E0 = 10 eV is
chosen to correspond to the outer electrons. The mean number of collisions can be calculated from

〈n〉 =
1
E0

dE

dx
∆x (30)

The number of collisions n is sampled from Poisson distribution. In the case of the thin layers, all the
collisions are considered as ionisations and the energy loss is computed as

∆E =
n∑

i=1

E0

1− Emax
Emax+E0

ui

(31)
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